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+ Qverview

Machine learning augments various steps in proteomics data analysis, from
training models for peptide properties and predicting them, to the usage of
target/decoy classifiers as in Percolator! for error control. Generating,
evaluating, and integrating such models largely remains unautomated
manual work. Here we present an end-to-end workflow that automates the
steps from raw data to production-ready model.

+ Workflow

0 Data ingest

Setting-up an ingest
requires meta BN
information that is
not always available
on PRIDE.

Download public spectrum and search
files from PRIDE.

Indexing: infer relationship of spectrum
and search files

Ingest: convert to standard formats and
upload to AWS S3

Filtering: focus on high-quality data,
outlier removal

Data harmonization: aligned to
standards and normalization

Data
preprocessing

Preprocessing is
purpose- and

model-specific. Dataset preparation: format conversion,

shuffle, splitting

o Model training Architeqture: layers and depth of the
models is sampled

Model definitions
and their evaluation
are purpose-specific.
Architecture search
and hyperparameter
search are not.

Optimization: hyperparameters are
sampled

Training: architecture-hyperparameter
combinations are trained

Evaluation: purpose-specific scripts
evaluate each model

o Model export — Optimization for client or server-side

—— Platform-specific export

References '( The et al 2016) "Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0"

1. Data ingest

Spectra, search results and their relations are ingested to a data lake (AWS
S3). Sequences are converted to the Proforma standard. Information is
accessible interactively via Jupyter Notebooks or RStudio. All ingests are
logged (see below).

Example: ProteomeTools? (synthetic peptides dataset)
+ Original size: ~9TB + Compressed size: ~890CB
+ AWS S3 cost: ~20% / month

+ ~110M unique PSMs + ~9M precursors

+ Total ingest time: 23h

Figure 1: log of ProteomeTools
search and spectra ingest to the
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2. Data preprocessing

Example: fragmentation spectrum prediction

For fragmentation we annotate y-, b-, immonium, parent and the most
frequent combinations of neutral loss ions with charges 1-3. Data is written
to tfrecords files. The data is split in train, test, and validation while
preventing duplication of peptides across splits.

Figure 2: log of the
fragmentation data
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CHIMERYS®, INFERYS® and MSAID® and are registered trademarks of MSAID GmbH. Thermo Scientific™ Proteome Discoverer™ software is a trademark of Thermo Fisher Scientific Inc.

2(Zolg, Wilhelm et al 2017) “Building ProteomeTools based on a complete synthetic human proteome”

3. Model training

The model architecture and hyperparameter search generated, trained, and
evaluated >2,500 distinct models within the last year. Trainings are logged
along with the respective model evaluation.

Watbes - Patameters

Figure 3: log of
retention time
models trained with
architecture search
and hyper-
parameter
optimization
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Retention time prediction

The retention time model is calibrated to a specific dataset via refinement
learning. The workflow automatically trains a base model and refines it on 4
external test datasets. Then, the refined model is evaluated on those
datasets and compared to baseline models (Figure 3). We identified a model
that is substantially smaller than other state-of-the-art models but similarly
accurate.

+ Prediction time for a human
digest: <2 min (GPU)

+ Time for refinement learning on
a 60-min run: <1 min (CPU)

Figure 4: retention time model size comparison
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Fragmentation spectrum prediction

This year we integrated TMT and CID spectra and improved prediction
accuracy for HLA peptides. At the same time the model size was reduced by a
factor of 4 resulting in a 3-fold speed-up.

Transforming Proteomics

Figure 5: fragmentation model evaluation. A) speed B) c-termini C) TMT
A)
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4. Model export

Models are exported for usage within client software (via C++ or Python-
bindings) or remotely via tensorflow serving (gRPC). Models can be
encrypted and are optimized for NVIDIA GPUs, Intel, AMD, or ARM CPUs.

+ |[ntegrations

Fragmentation and retention time models generated by this workflow are
integrated into the intelligent search algorithm CHIMERYS™, a software
node in Thermo Scientific™ Proteome Discoverer™ (PD). A fragmentation
model is integrated in INFERYS™ spectral library generation (in PD) and
INFERYS Rescoring (PD Node).

+ Related Talks

Monday Oral (today): "A streamlined rescoring implementation for
comprehensive proteomic data processing” by Daniel Zolg at 2:50pm in the
Informatics: Peptide and Protein ID session.

Thursday Oral: "A unifying, spectrum-centric approach for the analysis of
peptide tandem mass spectra” by Martin Frejno at 850am in the Informatics:
DIA and Multiplexing session.
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3(Gessulat, Schmidt et al 2019) "Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning”




